Synthesis of 2-alkyl (and aryl)-1-aryl-2-propen-1-ones via m-CPBA mediated oxidation of γ-(benzotriazol-1-yl)allylic selenides

Taehoon Kim and Kyongtae Kim*
School of Chemistry and Molecular Science, Seoul National University, Seoul 151-742, South Korea

Received 7 February 2002; revised 21 February 2002; accepted 25 February 2002

Abstract

Treatment of 2-alkyl (and aryl)-3-aryl-3-(benzotriazol-1-yl)allylic selenides with m-CPBA (1 equiv.) for 10 min in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt gave 2-alkyl (and aryl)-1-aryl-2-propen-1-ones in excellent yields. © 2002 Published by Elsevier Science Ltd.

Very recently, we reported the synthesis of 2,3-benzo-1,3a,6a-triazapentalenes 4 through Pummerer-type reactions of γ-(benzotriazol-1-yl)allylic sulfoxides 3, prepared by the oxidation of the corresponding sulfides $1(\mathrm{X}=\mathrm{S}) .{ }^{1}$

In connection with the formation of such a class of mesomeric betains by treatment of $\mathbf{3}$ with trifluoroacetic anhydride (TFAA) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt , we became interested in investigating the oxidation of the corresponding allylic selenides $2(X=S e)$. In contrast to stable

[^0]0040-4039/02/\$ - see front matter © 2002 Published by Elsevier Science Ltd.
PII: S0040-4039(02)00388-X
sulfoxides $\mathbf{3}$, selenoxides 5 formed by oxidation of $\mathbf{2}$ would be expected to be unstable due to $[2,3]$ sigmatropic rearrangement of allylic selenoxides to give unstable selenenate esters $6,{ }^{2}$ which liberate benzotriazolate ion concomitant with the formation of an oxonium ion 7. ${ }^{3}$ Hydrolysis of 7 would give title compounds 8 together with benzotriazole and phenylselenenic acid. Alternatively, compounds 8 might be formed via hydrolysis of an intermediate $9,{ }^{4}$ generated by possible elimination of benzeneselenate ion from 5, in which the driving force for the elimination may originate from delocalization of non-bonding electrons on the $\mathrm{N}-1$ of the benzotriazole moiety into the olefinic double bond. This is concomitant with the migration of the double bond to give an intermediate 9 despite the absence of β-hydrogen in view of the ready formation of olefins via a syn-elimination of selenoxides having a hydrogen atom at β-carbon. ${ }^{5}$

In order to prove the premise, we prepared the starting material 2 by treatment of 2,3-disubstituted (3-benzotri-azol-1-yl)allylic chloride $\mathbf{1 0}^{1}$ with benzeneselenol in the presence of NaOEt in THF. ${ }^{6}$ The stereochemistry of 2 along with their $(E) /(Z)$ ratios was determined based on NOE effects arising from the allylic protons and ortho proton(s) of Ar and R groups as described in the previous report. ${ }^{1}$ For example, compound (E)-2j ($\mathrm{Ar}=$ $\mathrm{Ph}, \mathrm{R}=t \mathrm{Bu}$) exhibiting a singlet at 3.95 ppm (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$), assigned to the allylic protons, has NOE effects with two ortho protons ($7.38-7.40 \mathrm{ppm}$) of the Ph group and nine protons (1.10 ppm) of the $t \mathrm{Bu}$ group, whereas compound (Z)-2 \mathbf{j} has the NOE effects arising from the allylic protons (3.68 ppm) and the protons (1.26 ppm) of the $t \mathrm{Bu}$ group. Similar NOE effects were observed for other (E) - and (Z)-2. It appeared that the stereochemistry was essentially intact in the course of the conversion of $\mathbf{1 0}$ into $\mathbf{2}$. The stereoisomers of $\mathbf{2}$ and $\mathbf{1 0}$ were separable by chromatography. Treatment of $(E)-\mathbf{2 a}(\mathrm{Ar}=\mathrm{R}=\mathrm{Ph})$ with
m-CPBA (1 equiv.) for 10 min in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt gave enone 8a in 85% yield 7 along with diphenyl diselenide $(39 \%){ }^{8}$ Similar treatment of (Z)-2a under the same conditions afforded 8a and diphenyl diselenide in 87 and 36% yields, respectively. This result indicates that elimination of selenenic acid from 5 is independent of the stereochemistry of $\mathbf{5}$. Consequently, a mixture of (E) - and (Z)-2 was subjected to the oxidation reaction with m-CPBA without separation of the stereoisomers. Yields of $\mathbf{2}$ and $\mathbf{8}$ along with the $(E) /(Z)$ ratios of $\mathbf{1 0}$ and $\mathbf{2}$ are summarized in Table 1.

Enones 8, which are important as a starting material for the synthesis of various organic compounds, have been mostly prepared by the Mannich reaction followed by β-elimination. ${ }^{14}$ Similarly, $N, N, N^{\prime}, N^{\prime}$-tetramethyldiaminomethane was found to be effective for the preparation of $\mathbf{8}$ ($\mathrm{Ar}=$ aryl, $\mathrm{R}=$ alkyl, aryl) from aryl arylmethyl ketones and alkyl aryl ketones in acetic anhydride at 40 and $90^{\circ} \mathrm{C}$, respectively. ${ }^{15}$ There exist other special methods, giving rise to $\mathbf{8}(\mathrm{Ar}=$ alkyl, aryl, $\mathrm{R}=\mathrm{H}$) which involves the reaction of methyl ketones with trioxane in the presence of N-methylanilium trifluoroacetate. ${ }^{9,16}$ Silyl enol ethers were converted to chloroenone $8(\mathrm{Ar}=\mathrm{Ph}, \mathrm{R}=\mathrm{Cl})$ in the presence of $\mathrm{TiCl}_{4}, \mathrm{LiAlH}_{4}$ in $\mathrm{CCl}_{4} .{ }^{17}$ Treatment of 3-iodo-1,2-diphenyl-1-propanone with DBU gave $\mathbf{8}(\mathrm{Ar}=\mathrm{Ph}, \mathrm{R}=$ $\mathrm{Me}) .{ }^{18}$ Siloxycyclopropane reacted with SnCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a stannane complex, which undergoes decomposition in DMSO to give $\mathbf{8}(\mathrm{Ar}=\mathrm{H}, \mathrm{R}=$ alkyl). ${ }^{19}$ Recently, Katritzky and co-workers reported benzotriazole-mediated synthesis of $\mathbf{8} .^{11}$

In summary, apart from the reactions of 2,3-disubstituted 3-(benzotriazol-1-yl)-2-propenyl phenyl sulfides $\mathbf{1}$ with m-CPBA, giving rise to the corresponding sulfoxides $\mathbf{3}$, reactions of the analogous selenides $\mathbf{2}$ under the same conditions afforded enones $\mathbf{8}$ in excellent yields.

Table 1. Yields of $\mathbf{2}$ and $\mathbf{8}$, and the $(E) /(Z)$ ratios of $\mathbf{1 0}$ and $\mathbf{2}$

Entry	Ar	R	Yield ${ }^{\text {a }}$ (\%)		
			$10(E / Z)^{\text {b }}$	$2(E / Z)^{\text {b }}$	$8^{\text {c }}$
a	Ph	Ph	(4.86:1)	85 (4.83:1)	$86(96)^{9}$
b	2-MeC6 H_{4}	Ph	(2.11:1)	83 (2.10:1)	$85(100)^{10}$
c	$2-\mathrm{MeC}_{6} \mathrm{H}_{4}$	4-MeC6 H_{4}	(2.99:1)	83 (2.97:1)	$84(82)^{11}$
d	$2-\mathrm{MeOC} 6 \mathrm{H}_{4}$	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	(1.91:1)	81 (1.87:1)	85^{13}
e	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	(1.04:1)	82 (1.11:1)	$92(98){ }^{11}$
f	4-MeOC66 H_{4}	β-Naphthyl	(2.68:1)	82 (2.46:1)	933^{13}
g	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	Ph	(3.61:1)	87 (3.65:1)	90^{13}
h	4-FC6 H_{4}	2,5-Me $\mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	(2.85:1)	83 (2.91:1)	88^{13}
i	Ph	Me	(8.01:1)	81 (7.41:1)	$85(85)^{9}$
j	Ph	$t \mathrm{Bu}$	(2.41:1)	82 (2.45:1)	$89(78)^{12}$

[^1]
Acknowledgements

This work was financially supported by the program of BK 21.

References

1. Kim, T.; Kim, K.; Park, Y. J. Eur. J. Org. Chem. 2002, 493-502.
2. Paulmier, C. Selenium Reagents and Intermediates in Organic Synthesis; Pergamon Press: Oxford, 1986; Chapter V, pp. 143-153.
3. Kang, Y. H.; Kim, K. J. Heterocyclic Chem. 1997, 34, 1741-1752.
4. Upon addition of m-CPBA, the spot ($R_{\mathrm{f}}=0.38-0.56$, EtOAc: n-hexane $=1: 4$) corresponding to 2 had completely disappeared and a new spot appeared at origin, which was indicative of the formation of a polar intermediate such as 7 and/or 9 . Work-up with water gave 8.
5. (a) Huguet, J. L. Adv. Chem. Ser. 1968, 76, 345-351; (b) Jones, D. N.; Mundy, D.; Whitehouse, R. D. J. Chem. Soc., Chem. Commun. 1970, 86-87; (c) Walter, R.; Roy, J. J. Org. Chem. 1971, 36, 2561-2563; (d) Sharpless, K. B.; Young, M. W.; Lauer, R. F. Tetrahedron Lett. 1973, 14, 1979-1982; (e) Sharpless, K. B.; Lauer, R. F. J. Am. Chem. Soc. 1973, 95, 2697-2699; (f) Paulmier, C. Selenium Reagents and Intermediates in Organic Synthesis; Pergamon Press: Oxford, 1986; Chapter V, pp. 124-161; (g) Nicolaou, K. C.; Petasis, N. A. Selenium in Natural Products Synthesis; Cis Inc, 1984; Chapter 4, pp. 66-166.
6. Typical procedure: Sodium ($32 \mathrm{mg}, 1.38 \mathrm{mmol}$) was placed in absolute EtOH (15 mL), followed by addition of benzeneselenol ($217 \mathrm{mg}, 1.38 \mathrm{mmol}$). The mixture was stirred for 5 min , followed by addition of a solution of 1-(3-chloro-1,2-diphenylpropenyl)-1H-benzotriazole 10a $(159 \mathrm{mg}, 0.46 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ at rt . The mixture was additionally stirred for 2 h , followed by addition of water (50 mL), which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30$ $\mathrm{mL} \times 3$). The extracts were dried over MgSO_{4}. Removal of the solvent in vacuo gave a residue, which was chromatographed on a silica gel column ($3 \times 10 \mathrm{~cm}$, EtOAc: n hexane $=1: 5$) to give compound 2a ($182 \mathrm{mg}, 85 \%$): Viscous liquid; $(E) /(Z)=4.83: 1$; IR (neat) 3040, 2912, 1600, 1569, 1475, 1436, 1374, 1267, 1224, 1153, 1067, 905, $737,692,520 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.93$ (s, 2H, CH2 Ce, Z), 4.28 (s, 2H, CH2 $\mathrm{Se}, E), 6.88-7.43$ (m, $18 \mathrm{H}, \mathrm{ArH}, E$ and Z), 7.93 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}, E$), 8.12 (dd, $J=10.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}, Z)$. Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{Se}: \mathrm{C}, 69.52 ; \mathrm{H}, 4.54 ; \mathrm{N}, 9.01$. Found: C, 69.60; H, 4.52; N, 8.97.
7. Typical procedure: To a solution of $(E) \mathbf{- 2 a}(121 \mathrm{mg}, 0.35$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added m-CPBA (45 mg , 0.35 mmol) at rt . The mixture was stirred for 10 min , followed by addition of aqueous $\mathrm{NaHCO}_{3}(10 \%)$, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($30 \mathrm{~mL} \times 3$). The combined extracts were dried over MgSO_{4}. After removal of the solvent in vacuo, the residue was chromatographed on a silica gel column $(2 \times 10 \mathrm{~cm}, \mathrm{EtOAc}: n$-hexane $=1: 7)$ to give diphenyl diselenide ($21 \mathrm{mg}, 39 \%$): $\mathrm{mp} 61-63^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / n\right.$-hexane) (lit. mp $60-62^{\circ} \mathrm{C}$) and compound 8a ($63 \mathrm{mg}, 85 \%$): liquid; IR (neat) 3048, 2920, 1656, 1588,

1486, 1438, 1323, 1208, 1174, 912, 770, 696, 588, 520 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.76(\mathrm{~s}, 1 \mathrm{H}$ of $\left.=\mathrm{CH}_{2}\right), 6.09\left(\mathrm{~s}, 1 \mathrm{H}\right.$ of $\left.=\mathrm{CH}_{2}\right), 7.32-7.39(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH})$, $7.41-7.50(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.54-7.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.92-$ 7.98 (m, 2H, ArH); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 121.2$, $127.5,128.8,129.0,130.4,133.5,137.4,137.5,148.7$, 197.9 (signal of one aromatic C atom not visible); MS (70 $\mathrm{eV})(m / z) 208\left(\mathrm{M}^{+}, 78.8 \%\right), 179$ (6.7), 165 (5.0), 105 (100.0), 77 (52.2), 51 (12.7). Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}$, 86.51; H, 5.81. Found: C, 86.43; H, 5.75. Refer to reference for mp of PhSeSePh : Reich, H. J.; Renga, J. M.; Reich, I. L. J. Am. Chem. Soc. 1975, 97, 5434-5447.
8. The selenenic acids disproportionate rapidly into selenols and seleninic acids. The reactions of selenols with selenenic acids give diselenides. Refer to Ref. 2, Chapter II, pp. 25-57.
9. Gras, J.-L. Tetrahedron Lett. 1978, 19, 2111-2114.
10. Hickman, D. N.; Hodgetts, K. J.; Mackman, P. S.; Wallace, T. W.; Wardleworth, J. M. Tetrahedron 1996, 52, 2235-2260.
11. Katritzky, A. R.; Toader, D.; Chassaing, C. J. Org. Chem. 1998, 63, 9983-9986.
12. Olah, G. A.; Wu, A.-h. J. Org. Chem. 1991, 56, 25312534.
13. 8d: Liquid; IR (neat) $3008,2920,1659,1590,1504,1476$, 1452, 1428, 1320, 1273, 1246, 1200, 1112, 1019, 973, 820, $753,521 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.38(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.74\left(\mathrm{~s}, 1 \mathrm{H}\right.$ of $\left.=\mathrm{CH}_{2}\right), 5.99$ $\left(\mathrm{s}, 1 \mathrm{H}\right.$ of $\left.=\mathrm{CH}_{2}\right), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.01(\mathrm{dd}$, $J=7.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, 7.33 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.41-7.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, 7.52 (dd, $J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 21.6,56.0,111.9,120.8,124.4,128.2,129.3$, $130.4,132.8,134.7,138.2,150.6,158.2,198.1$ (signal of one aromatic C atom not visible); MS (70 eV) (m/z) 252 $\left(\mathrm{M}^{+}, 30.0 \%\right), 135$ (100.0), 115 (8.8), 92 (8.3), 77 (13.3), 51 (2.3). Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 80.93; H, 6.39. Found: C, 80.99; H, 6.43. 8f: Mp $107-109^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / n\right.$-hexane $)$; IR (KBr) 3040, 2928, 1644, 1587, 1497, 1449, 1304, 1251, 1161, 1022, 976, 841, 776, $515 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.67\left(\mathrm{~s}, 1 \mathrm{H}\right.$ of $\left.=\mathrm{CH}_{2}\right)$, $6.14\left(\mathrm{~s}, 1 \mathrm{H}\right.$ of $\left.=\mathrm{CH}_{2}\right), 6.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, 7.46-7.50 (m, 2H, ArH), 7.63 (dd, $J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.77-7.89 (m, 4H, ArH), 8.00 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 55.9,114.2,119.3$, 124.7, 126.7, 126.8, 128.0, 128.9, 130.3, 132.9, 133.5, 133.7, 134.8, 148.9, 164.2, 196.7 (signals of two aromatic C atoms not visible); MS (70 eV) (m/z) $288\left(\mathrm{M}^{+}, 32.3 \%\right)$, 152 (15.2), 135 (100.0), 92 (10.5), 77 (17.1). Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2}$: C, $83.31 ; \mathrm{H}, 5.59$. Found: C, $83.24 ; \mathrm{H}$, 5.63. 8g: Liquid; IR (neat) 3048, 2912, 1657, 1587, 1491, $1401,1320,1224,1148,977,849,780,692,580,505 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.65\left(\mathrm{~s}, 1 \mathrm{H}\right.$ of $\left.=\mathrm{CH}_{2}\right), 6.07$ $\left(\mathrm{s}, 1 \mathrm{H}\right.$ of $\left.=\mathrm{CH}_{2}\right), 7.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.33-7.47$ (m, 5H, ArH), 7.93-8.00 (m, 2H, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 116.0\left({ }^{2} J=21.8 \mathrm{~Hz}\right), 120.8,127.4$, $129.0,129.1,133.0\left({ }^{3} J=9.3 \mathrm{~Hz}\right), 133.8\left({ }^{4} J=2.9 \mathrm{~Hz}\right)$, 137.2, 148.6, 166.2 (${ }^{1} J=253.8 \mathrm{~Hz}$), 196.3; MS (70 eV) $(m / z) 226\left(\mathrm{M}^{+}, 100.0 \%\right), 197$ (9.0), 183 (6.7), 123 (100.0), 95 (72.9), 77 (34.0), 51 (12.4). Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{FO}$: C, 79.63; H, 4.90. Found: C, 79.70; H, 4.94. 8h: Liquid; IR (neat) 3016, 2912, 1651, 1587, 1489, 1440, 1198, 1313, 1225, 1148, 977, 846, 809, 784, 590, $516 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.37(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $5.99\left(\mathrm{dd}, J=11.8,1.1 \mathrm{~Hz}, 2 \mathrm{H},=\mathrm{CH}_{2}\right.$), $7.05-7.17$ $(\mathrm{m}, 5 \mathrm{H}, \operatorname{ArH}), 7.90-7.99(\mathrm{~m}, 2 \mathrm{H}, \operatorname{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 20.4,21.3,115.9 \quad\left({ }^{2} J=21.7 \mathrm{~Hz}\right)$, $127.8,129.6,130.6,130.7,132.7,132.8\left({ }^{3} J=9.2 \mathrm{~Hz}\right)$, $133.9\left({ }^{4} J=3.0 \mathrm{~Hz}\right), 136.0,138.4,149.6,165.8\left({ }^{1} J=252.9\right.$ $\mathrm{Hz}), 195.4 ; \mathrm{MS}(70 \mathrm{eV})(\mathrm{m} / \mathrm{z}) 254\left(\mathrm{M}^{+}, 100 \%\right)$, 131 (35.7), 123 (55.5), 115 (17.0), 95 (19.1), 91 (14.2). Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{15}$ FO: C, 80.29; H, 5.95. Found: C, 80.21; H, 5.99.
14. (a) Harrsen, J. F.; Szymborski, P. A.; Vidusek, D. A. J. Org. Chem. 1979, 44, 661-662; (b) Burckhalter, J. H.;

Fuson, R. C. J. Am. Chem. Soc. 1948, 70, 4184-4186.
15. (a) de Solms, S. J. J. Org. Chem. 1976, 41, 2650-2651; (b) Takahashi, K.; Shimizu, S.; Ogata, M. Synth. Commun. 1987, 17, 809-815.
16. Gras, J.-L. Tetrahedron Lett. 1978, 19, 2955-2958.
17. Mitani, M.; Kobayashi, Y. Bull. Chem. Soc. Jpn. 1994, 67, 284-286.
18. Ciganek, E.; Calabrese, J. C. J. Org. Chem. 1995, 60, 4439-4443.
19. Ryu, I.; Murai, S.; Sonoda, N. J. Org. Chem. 1986, 51, 2391-2393.

[^0]: Keywords: benzotriazoles; enones; oxidation; selenium and compounds.

 * Corresponding author.

[^1]: ${ }^{\text {a }}$ Isolated yields.
 ${ }^{\mathrm{b}}$ The ratios of stereoisomers were determined based on the ${ }^{1} \mathrm{H}$ NMR absorptions of the allylic protons ((E)-2: $3.95-4.44 \mathrm{ppm} ;(Z)-\mathbf{2}: 3.64-4.05$ ppm; (E)-10: $4.28-4.87 \mathrm{ppm} ;(Z)-10: 4.02-4.45 \mathrm{ppm})$.
 ${ }^{\mathrm{c}}$ The number in parentheses represents yield in the literature.

